From “Program Proofs”, K. Rustan M. Leino, MIT Press, 2023.

Appendix A

Dafny Syntax Cheat Sheet

This appendix shows snippets of Dafny syntax. These are intended to jog your mem-
ory of, or to suggest, how to use various constructs in Dafny, not to give you a tutorial
introduction of the constructs. The snippets are therefore given without much expla-
nation. To find uses of the constructs in this book, consult the Index. For full details,
see the Dafny reference manual [36].

A.0. Declarations

A Dafny program is a hierarchy of nested modules. Dependencies among modules
are announced by import declarations. A program’s import relation must not contain
cycles. The export set of a module determines which of the module’s declarations are
visible to importers.

module MyModule {
export
provides A, B, C
reveals D, E, F
import L = LibraryA // L is a local name for imported module LibraryA
import LibraryB // shorthand for: import LibraryB = LibraryB

// declarations of types and module-level members...

}

The outermost module of a program is implicit. Therefore, small programs can de-
fine methods and functions without needing to wrap them inside a module declaration.

A.0.0. Types and type declarations

Here are some example type declarations:

Leino, Rustan
From “Program Proofs”, K. Rustan M. Leino, MIT Press, 2023.

428 APPENDIX A. DAFNY SYNTAX CHEAT SHEET

datatype Color = Brown | Blue | Hazel | Green
datatype Unary = Zero | Suc(Unary)
datatype List<X> = Nil | Cons(head: X, tail: List<X>)

class C<X> {
// class member declarations...

}
type OpaqueType

type TypeSynonym = int

The X in these examples is a type parameter.

Examples of types:
bool int nat real
set<X> seq<X> multiset<X> map<X, Y>
char string X ->Y
() (X, Y) (X, Y, Z2)
array<x> array?<x> array2<x>
object object? MyClass<X> MyClass?<X>

The types shown here with parentheses denote 0-, 2-, and 3-tuples.

A.0.1. Member declarations

method M(a: A, b: B) returns (c: C, d: D)
requires Pre
modifies objO, objl, objectSet
ensures Post // old(E) refers to the value of E on entry to the method
decreases EO, E1, E2

A constructor (in a class) or lemma has the same syntax as a method. For an anony-
mous constructor, omit the name M.

function F(a: A, b: B): C
requires Pre
reads obj0®, objl, objectSet
ensures Post // F(a, b) refers to the result of the function
decreases EO, E1, E2

If C is bool, then the first line of the function declaration can be written as
predicate F(a: A, b: B)
Declarations of fields and constants:

var b: B // mutable field, can be used only in classes

A.1. STATEMENTS 429

const n: nat
const greeting: string := "hello"
const year := 1402

function, predicate, var, and const declarations can be preceded by ghost.

A.1. Statements

Each primitive statement ends with a ; (semi-colon). In contrast, a statement with a
body (enclosed in curly braces) does not end with a ;.
Declaration of local variables:

var x: X;

The “: X” can be omitted if the type can be inferred. When declaring more than one
variable, the : (colon) binds stronger than , (comma). That is,

var x, y: Y;

declares y to have type Y and leaves the type of x to be inferred.

Assignments:
x := E; // = 1s pronounced "gets" or "becomes" (NOT "equals"!)
x, y :=E, F; // simultaneous assignment
x | E; // assign x a value that makes E hold (assign such that)

A declaration of a variable and an assignment to the same variable can be combined
into one statement, like var x := E;.
Dynamic allocation of objects and arrays:

c :=new C(...);
a = new T[n];
a :=new T[n](i => ...);

Method calls with 0, 1, and 2 out-parameters:

MethodWithNoResults(E, F);
X := MethodWithOneResult(E, F);
X, Yy := MethodWithTwoResults(E, F);

Other primitive statements:
assert E; return; return E, F, G; new;
Some composite statements:

if E {

// statements...
} else {

// statements...

430
if {
case EO => // statements...
case E1l => // statements...
}
match E {

case PatternO(x, vy)
case Patternl(z, _)

}

while Guard
invariant Inv
modifies obj0, objl, objectSet
decreases EO, E1, E2

{

// statements...

}

forall x: X | Range {
// assignment statement

}

calc {
EO;

{ assert HintWhyEOEqualsEl; }
E1l;

E2;
}

APPENDIX A. DAFNY SYNTAX CHEAT SHEET

=> // statements...
=> // statements...

{ LemmaThatExplainsWhyElEqualsE2(); }

In the if statement (unlike in the if-then-else expression), the else branch is optional,
and the curly braces are required. When an if-case or match statement is given last
in a statement list, the curly braces that surround the cases can be omitted. Without
the curly braces, each case is stylistically not indented but kept flush with the if or
match keyword. The forall statement is an aggregate statement that simultaneously
performs the given assignment statement for every value of x that satisfies Range. The
calc statement is used to write a structured proof calculation.

A.2. Expressions

Figure A.0 shows common operators. Operators in the same section have the same
binding power, and the sections are ordered from lowest to highest binding power.

A.2. EXPRESSIONS 431

<==> iff (lowest binding power)

==> <== implication, reverse implication

&& | and, or

== I= equality, disequality

< <= => > inequality comparisons

in lin collection membership

' set disjointness

+ - plus/ union/concatenation/merge, minus
* / % multiplication/intersection, division, modulus
_ as int conversion to integer

! - boolean not, unary negation

_.X member selection

_[2] _[- :=_1 element selection, update

I P subrange

B P take, drop

_[..] array-elements to sequence

Figure A.0. Operator binding powers.

For sets, <= denotes subset, + denotes union, * denotes intersection, and - denotes
set difference. For multisets, those operators denote the analogous multiset operations.
For sequences, <= denotes prefix and + denotes concatenation. For maps, + denotes
map merge (where the right-hand operand takes priority) and - denotes map domain
subtraction. The operator < is the strict version of <=.

In the member-selection expression E. x, E is an expression (typically a reference or
datatype value) and x is a member of the type of E.

The expression E[J] selects member J from E, where E is an array, sequence, or map
and J either denotes an index into the array or sequence or denotes a key in the map.
For a multiset E, E[J] denotes the multiplicity of element J. The elements of a tuple are
selected using numerically named members; for example, the 3 members of a triple E
are selected by E.0, E.1,and E. 2.

If E is a sequence, map, or multiset, the update expression E[J := V] returns a
collection like E except that element J, key J, or the multiplicity of J, respectively, has
been replaced by V.

For an array or sequence E, the subsequence expression E[10. .hi] is the sequence
of hi - lo elements from E starting at lo. If the lower bound is omitted, it defaults to
0, and if the upper bound is omitted, it defaults to the length of the array or sequence.
For an array E, the expression E[. .], which has the same meaning as E[0. .E.Length],
obtains the sequence of all elements of E.

If E is a set, multiset, or sequence, then the expression | E| denotes the total number
of elements of E (which is known as the cardinality of the set or multiset, and the length

432 APPENDIX A. DAFNY SYNTAX CHEAT SHEET

of the sequence). The expression E.Keys denotes the set of keys in a map E. The number
of elements in an array E is written E.Length, and the lengths of the dimensions of a
2-dimensional array E are written E.LengthO and E.Lengthl.

The following table shows tuples, set displays, multiset displays, sequence displays,
and map displays with 0 and 3 elements (or fewer for the set, if some of a, b, and c are
equal):

() (a, b, ¢)

{} {a, b, c}

multiset{} multiset{a, b, c}

[] [a, b, c]

map [] map[x :=a, y :=b, z := c]

Here are some literals and other expressions:

44 1.618 'D’ "hello"
this null old(E) fresh(E)
seq(E, i => ...) // sequence comprehension

if E then EO else E1l

match E {
case PatternO(x, y) => EO
case Patternl(z, _) => El

}

assert EO; E1 // like E1, but first asserts EO
MyLemma(); E // like E1, but first calls MyLemma()
var x := EO; E1 // pronounced "let x be EO® in E1"

set x: X | Range
forall x: X :: Expr // Expr typically has the form E@ ==> El
exists x: X :: Expr // Expr often uses &&, seldom ==>

In the if-then-else expression (unlike in the if statement), the else branch is re-
quired, and there are no curly braces around EO and E1 (except if they happen to be
set-display expressions).

Unless you're nesting one match expression inside another, you can omit the curly
braces. Without the curly braces, each case is stylistically not indented but kept flush
with the match keyword.

